Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Medicine ; 3(2):97-100, 2022.
Article in English | EuropePMC | ID: covidwho-2302715

ABSTRACT

Luteolin is a natural flavonoid that has a variety of pharmacological activities, such as anti-inflammatory, anti-allergic, anti-bacterial, anti-viral, apoptosis inhibition, cell autophagy regulation, and anti-tumor activity. It is one of the main ingredients of an expert-recommended herbal formula for the prevention and treatment of coronavirus disease 2019 (COVID-19). This suggests that luteolin has strong pharmacological effects on the prevention and treatment of COVID-19. The aims of this study were to identify the molecular targets of luteolin and to infer the possible mechanisms by which it exerts its pharmacological effects. The GSE159787 data set was obtained from the Gene Expression Omnibus online database, and differentially expressed genes were analyzed. There were 22 upregulated differentially expressed genes enriched in the COVID-19 signaling pathway, suggesting that the upregulation of these genes may be closely related to the occurrence of COVID-19. Molecular docking results showed that luteolin had strong binding efficiency to 20 of these 22 key genes. Six of these genes (CFB, EIF2AK2, OAS1, MAPK11, OAS3, and STAT1) showed strong binding activity. Luteolin can regulate the COVID-19 signaling pathway by combining with these targets, which may have a therapeutic effect on COVID-19.

2.
Emerg Microbes Infect ; 11(1): 2007-2020, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1960867

ABSTRACT

Dynamic changes of the paired heavy and light chain B cell receptor (BCR) repertoire provide an essential insight into understanding the humoral immune response post-SARS-CoV-2 infection and vaccination. However, differences between the endogenous paired BCR repertoire kinetics in SARS-CoV-2 infection and previously recovered/naïve subjects treated with the inactivated vaccine remain largely unknown. We performed single-cell V(D)J sequencing of B cells from six healthy donors with three shots of inactivated SARS-CoV-2 vaccine (BBIBP-CorV), five people who received the BBIBP-CorV vaccine after having recovered from COVID-19, five unvaccinated COVID-19 recovered patients and then integrated with public data of B cells from four SARS-CoV-2-infected subjects. We discovered that BCR variable (V) genes were more prominently used in the SARS-CoV-2 exposed groups (both in the group with active infection and in the group that had recovered) than in the vaccinated groups. The VH gene that expanded the most after SARS-CoV-2 infection was IGHV3-33, while IGHV3-23 in the vaccinated groups. SARS-CoV-2-infected group enhanced more BCR clonal expansion and somatic hypermutation than the vaccinated healthy group. A small proportion of public clonotypes were shared between the SARS-CoV-2 infected, vaccinated healthy, and recovered groups. Moreover, several public antibodies had been identified against SARS-CoV-2 spike protein. We comprehensively characterize the paired heavy and light chain BCR repertoire from SARS-CoV-2 infection to vaccination, providing further guidance for the development of the next-generation precision vaccine.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL